United States Patent

US009467460B1

(12) (10) Patent No.: US 9,467,460 B1
Otvagin et al. 45) Date of Patent: Oct. 11, 2016
(54) MODULARIZED DATABASE 8,370,931 B1* 2/2013 Chien GOGF 11/3072
ARCHITECTURE USING VERTICAL 709/224
PARTITIONING FOR A STATE MACHINE 2008/0126376 Al* 5/2008 Leff ..o GOG6F 8/65
2014/0187177 Al* 7/2014 Sridhara GO6N 5/043
S o 455/73
(71) Applicant: FireEye, Inc., Milpitas, CA (US) 2014/0298027 Al* 10/2014 Roberts ..oovvviv... HO4L 9/0869
713/171
(72) Inventors: Alexander Otvagin, Campbell, CA
(US); Vineet Kumar, San Jose, CA * cited by examiner
(US); Arsen Movsesyan, San Jose, CA
(US)
Primary Examiner — Michael S McNally
(73) Assignee: FireEye, Inc., Milpitas, CA (US) (74) Attorney, Agent, or Firm — Cesari and McKenna,
LLP
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
(21) Appl. No.: 14/580,501 A modularized architecture using vertical partitioning of a
(22) Filed: Dec. 23. 2014 database is configured to store object metadata and process-
’ T ing results of one or more objects analyzed by a state
(51) Int. CL machine, such as an analysis engine of a malware detection
HO4L 29/06 (2006.01) system. The database may include a plurality of data struc-
GO6F 17/30 (2006.01) tures, such as one or more master blocks, state sub-blocks,
(52) US.CL and state co-tables, as well as state transition queues. The
CPC HO4L 63/14 (2013.01); GO6F 17/30091 modularized architecture may organize the database as one
(2013.01) or more stages of a state machine, wherein each stage
(58) Field of Classification Search includes a state sub-block, a state co-table and a state
CPC oo, HO04L 63/14; GOG6F 17/30091 transition queue. The modularized architecture may further
USPC ettt 726/3, 23 organize the database such that each stage corresponds to an
See application file for complete search history. action, i.e., module, of the state machine on the object. The
module may process the data structures of its corresponding
(56) References Cited stage such that a state sub-block receives information from

U.S. PATENT DOCUMENTS

7,028,228 B1* 4/2006 Lovycccooonn. GOG6F 11/3495
714/47.2
7,962,382 B1* 6/2011 Tancredi G06Q 20/02
705/30

500\

its state transition queue, wherein the module generates
results that are stored in its associated state co-table, which
then provides information for a next stage.

20 Claims, 8 Drawing Sheets

w2

INSERT ACTION REQUESTINTO |
STATE TRANSITION QUEUE OF [~804
INITIAL STAGE

——| DEQUEUE ACTION REQUEST I\ggs

EXECUTE ACTION (CONSUME INPUT,
PRODUCE QUTPUT) 808

MARK COMPLETION N SUB-STATE
BLOCK 810

STORE ACTION QUTPUT IN STATE
CO-TABLE 812

820
{

INSERT ACTION
REQUEST INTO STATE

STAGES REMAINING?

822
14

TRANSITION QUEUE
OF NEXT STAGE

POLL NEXT STAGE
DEPENDENCY

DEPENDENCY
OF NEXT STAGE
SATISFIED?

US 9,467,460 B1

Sheet 1 of 8

Oct. 11, 2016

U.S. Patent

0z}

’ MHOMIAN
\ / oand
051 .../ \...
— 3AON
gl
— O o 31VIQINEILNI —
002 SaN 31VAINd JAON
31VIQIWETLNI

e

(TTvm3dId)
0% 051
JAON ILYIIWHILNI JAON
JLVIGIWYILNI

002 SaN

|
| \

0Ll

3091

US 9,467,460 B1

Sheet 2 of 8

Oct. 11, 2016

U.S. Patent

8l¢

¢ 9Old
912 (S) oﬂ
JOV4HILNI
(S)301A3a WYOMLIN

007 _\/_Em%@:ﬁmo
3Svav1va
SISATYNY VMV

0€2
TANH3IN WILSAS
ONILYH3dO

ore
$35S300Md
30O ¥3SN

022 AYOWANW

U.S. Patent Oct. 11, 2016 Sheet 3 of 8 US 9,467,460 B1

OBJECT 302

SUBMITTER
310 \

ANALYSIS ENGINE
320

STATIC ANALYSIS
MODULE
330

SCORE GENERATOR

'\"OS%LE ANALYSIS
340 DATABASE
400

BEHAVIORAL ANALYSIS
MODULE
350

CLASSIFIER MODULE
360

FIG. 3

US 9,467,460 B1

Sheet 4 of 8

Oct. 11, 2016

U.S. Patent

v Old

¥2v HSYH 123rdo

7y aI1o3rgo

0z
318vL 103rdo

6SF OVT14 NOILITdWOD

9% LNdLNO NOILOY

8ey dNVLSINIL AN

96y 9V14 1S3INO3Y

9¢y dWVISIWIL LYVIS

Gy dNY1SANIL

Fa7) al 193rg0

oy
(LDS) 31gvL-00 3LVIS

F2 al 193rgo F72 al 193rgo
oy 018 hano
h 1S) 3nan
(9SS) MD01g-dns 31VIS NOLLISNYUL 2LYLS
N—00p

US 9,467,460 B1

Sheet 5 of 8

Oct. 11, 2016

U.S. Patent

0¥

S1InS3y

0l1S

090G
(4305na0¥d
/4INNSNOD)

€ JOVIS

1S3N03d
NOILIV

S1INS3Y 21001
AON3AN343d

1| _||||||||
]
I
1
1
|
2108 |
i
2
.Amﬂnv. LS
!
|
3INOG
—zass
!
||||| +||||
1
Y
£ 1901
AONIONIdIA

é 0Z€5G
_ (432Na0Yd

/4INNSNOD)

0z€S
Qo) 5
(4323na0Yd

f43NNSNOD)

I OVIS

¢ 21901
AONIAN343d

US 9,467,460 B1

Sheet 6 of 8

Oct. 11, 2016

U.S. Patent

9 Ol

SINSIE 000NN |

SERIBES ON3AN3d3a,

VIS

\ AONIONE30

3907

§ 0107

17918 M sonaangeag J| 3918 ™

£

AONZONAdIQ

£ o120

wfi@ew

US 9,467,460 B1

Sheet 7 of 8

Oct. 11, 2016

U.S. Patent

S11NS3d

L Ol

JOV1S

JOV1S

G

¥ J190T
ON3AN3d4

>l

AON3AdN3d3d

11NS3Y o_oow

JOV1S

JOV1S

A

(s

€ 21007
ON3AN3d4

o)

JOV1S

-

10

U.S. Patent Oct. 11, 2016 Sheet 8 of 8 US 9,467,460 B1

o G

INSERT ACTION REQUESTINTO |
STATE TRANSITION QUEUE OF 804
INITIAL STAGE

DEQUEUE ACTION REQUEST ~- 806

!

EXECUTE ACTION (CONSUME INPUT, |
PRODUCE OUTPUT) 808

'

MARK COMPLETION IN SUB-STATE |
BLOCK 810

!

STORE ACTION OUTPUT IN STATE |
CO-TABLE 812

\

STAGES REMAINING?

820
{

INSERT ACTION 822

REQUEST INTO STATE) 1
TRANSITION QUEUE POLL NEXT STAGE
OF NEXT STAGE DEPENDENGY STORE RESULTS
A *
818
YES DEPENDENCY END 824

OF NEXT STAGE
SATISFIED?

FIG.8

US 9,467,460 B1

1

MODULARIZED DATABASE
ARCHITECTURE USING VERTICAL
PARTITIONING FOR A STATE MACHINE

BACKGROUND

1. Technical Field

The disclosure relates to malware detection systems and,
more specifically, to a modularized database architecture
using vertical partitioning for a state machine of a malware
detection system.

2. Background Information

A prior approach to analyzing potential malicious soft-
ware (malware) involves use of a malware detection system
configured to examine content of an object, such as a web
page, email, file or universal resource locator, and rendering
of' a malware/non-malware classification based on previous
analysis of that object. The malware detection system may
include an analysis engine having one or more stages of
analysis, e.g., static analysis and/or behavioral analysis, of
the object. The static analysis stage may be configured to
detect anomalous characteristics of the object to identify
whether the object is “suspect” and deserving of further
analysis or whether the first object is non-suspect (i.e.,
benign) and not requiring further analysis. The behavioral
analysis stage may be configured to process (i.e., analyze)
the suspect object to arrive at the malware/non-malware
classification based on observed anomalous behaviors.

The observed behaviors (i.e., analysis results) for the
suspect object may be recorded in an object cache that may
be accessible via an object identifier (ID) that is generated
for the object. The object cache may be organized as a single
data structure (e.g., a large table) having a plurality of entries
or rows, each of which represents metadata of an object, and
a plurality of columns, each of which represents an attribute
of the object metadata. The rows of the cache may be
configured to store updates, such as insertions and deletions,
of the object metadata, which may include constant meta-
data (such as an object ID and size of object) as well as
behavioral metadata (such as states associated with the
object).

Use of the single table to accommodate such updates may
adversely impact performance of the object cache, particu-
larly when a large number of rows (i.e., object metadata) are
regularly modified (i.e., updated) triggering frequent gar-
bage collection. That is, a number (e.g., M) of rows transi-
tioning through another number (e.g., N) of updates (i.e.,
states) yields a much larger number (e.g., MxN) of dirty
rows requiring garbage collection. As a result, the overall
performance of the object cache degrades. In addition, use of
the single table may suffer from a loss of object metadata
(i.e., information in the rows) as updates occur overwriting
existing metadata (i.e., the dirty rows are reclaimed).

Further, performance is also impacted where two or more
processes attempt to access, e.g., read, write and/or over-
write, the object metadata of the rows concurrently. To
improve performance, the rows of the table may be copied
(i.e., shadow copied) to additional (unused) rows of the table
to accommodate the concurrent accesses. As a result, sub-
sequent read accesses of the object metadata may be directed
to the shadow copies pending synchronization with the
original row (and garbage collection of the shadow copy). In
addition, a number of states associated with the object may
increase as the object metadata is analyzed (e.g., behavioral
analysis), thereby requiring the insertion of yet more rows
into the object cache to capture information associated with
each state. However, multiple updates to the object metadata

40

45

2

(i.e., row insertion, column updates, and garbage collection)
and concomitant contention may adversely impact perfor-
mance of the system. Moreover, as the object metadata of
each row transitions through various states during the analy-
sis, there may be overwrite of one or more attributes of the
object metadata. Therefore, in addition to the adverse per-
formance impact (from inserting, copying and garbage col-
lection), the use of the single table may suffer from a loss of
information (i.e., object metadata) as the states transition.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the embodiments
herein may be better understood by referring to the follow-
ing description in conjunction with the accompanying draw-
ings in which like reference numerals indicate identically or
functionally similar elements, of which:

FIG. 1 is a block diagram of a network environment that
may be advantageously used with one or more embodiments
described herein;

FIG. 2 is a block diagram of an intermediate node that
may be advantageously used with one or more embodiments
described herein;

FIG. 3 is a block diagram of a malware detection system
that may be advantageously used with one or more embodi-
ments described herein;

FIG. 4 is a block diagram of an exemplary analysis
database that may be advantageously used with one or more
embodiments described herein;

FIG. 5 is a block diagram of an exemplary modularized
architecture of the analysis database that may be advanta-
geously used with one or more embodiments described
herein;

FIG. 6 is a block diagram of another exemplary modu-
larized architecture of the analysis database that may be
advantageously used with one or more embodiments
described herein;

FIG. 7 is a block diagram of yet another exemplary
modularized architecture of the analysis database that may
be advantageously used with one or more embodiments
described herein; and

FIG. 8 is an exemplary simplified procedure for executing
a state machine using the modularized architecture described
herein.

OVERVIEW

The embodiments herein provide a modularized architec-
ture using vertical partitioning of an analysis database
configured to store information, such as object metadata, of
one or more objects processed by a state machine, such as
an analysis engine of a malware detection system to generate
processing results. The analysis database may include a
plurality of vertical data structures, such as one or more
master blocks (i.e., object tables), state sub-blocks, and state
co-tables, as well as state transition queues. The modular-
ized architecture may illustratively organize (i.e., partition)
the analysis database vertically into a plurality of stages,
wherein each stage includes a state sub-block, a state co-
table and a state transition queue. The modularized archi-
tecture may further organize the database such that each
stage corresponds to a process (i.e., execution of a module)
of the state machine (e.g., analysis engine operating on the
object). Notably, each module may operate (i.e., perform an
action) on the object metadata stored in data structures
corresponding to the object and generate (via the action) the
processing results that may be stored in its associated state

US 9,467,460 B1

3

co-table, which then provides information for a next stage.
Invocation of the next stage (i.e., performance of the next
stage action) occurs via an action request inserted into the
state transition queue of the next stage. The transition may
be dependent on completion (and results) of one or more
prior stages. That is, the next stage may have a dependency
on the one or more prior stages that provide input (i.e., prior
stage results) for execution of the next stage action. In an
embodiment, dependency logic associated with each stage
may determine whether the dependency is satisfied and, if
s0, may insert an action request into the state transition
queue for the next stage to invoke the action associated with
that stage.

Tlustratively, an object table containing initial state meta-
data (e.g., object identifier and object hash) of an object may
be vertically partitioned into one or more master blocks.
Each state sub-block may be configured to store object
metadata needed for processing by the module (i.e., a
corresponding action) of the state machine (e.g., analysis
engine) and each state co-table may be configured to store
results of the processing by the action. For example, the
processing results may include analytical information, such
as anomalous behaviors, associated with the object observed
at an associated state. Note that the “co-table” denotes
association of the state co-table with the master block of the
object table such that the results stored in the state co-table
may be accessible by reference, e.g., via an object identifier.
Each state transition queue is configured to store action
requests (e.g., insertions and deletions) for transitioning
between the stages and, to that end, may be configured to
leverage database primitives to, e.g., manipulate entries in
the state transition queue and to update the state sub-block.

In an embodiment, the modularized architecture may
include an object table storing metadata for each object,
wherein the object table is initially of a small size or empty.
Subsequently during processing of the object, the size of the
object table may increase as appropriate state sub-blocks,
state co-tables and state transition queues are instantiated
and results from each stage are stored in their respective
state co-table. As the object is processed, information asso-
ciated with a state transition, e.g., stored in the state co-table
for one or more previous stages of the database, may be used
by a module (e.g., module of the analysis engine performing
an action) associated with the next stage of the database.
Notably, the action associated with a stage is performed
when an action request is inserted into the state transition
queue of that stage, e.g., directly by a previous stage and
when the one or more dependencies of the stage are satisfied.
Ilustratively, the state transition queue may be embodied as
a small, lightweight table configured to store information
associated with a state transition, and may include depen-
dencies for the transition between stages (and/or states). It is
expressly contemplated that the embodiments described
herein may include any overall operation (including busi-
ness operations) which may be implemented as a state
machine, such as gathering and delivery of mail (i.e., postal
services).

DESCRIPTION

FIG. 1 is a block diagram of a network environment 100
that may be advantageously used with one or more embodi-
ments described herein. The network environment 100 illus-
tratively includes a plurality of computer networks orga-
nized as a public network 120, such as the Internet, and a
private network 130 (i.e., customer network), such as an
organization, enterprise, or personal network. The networks

10

15

20

25

30

35

40

45

50

55

60

65

4

120, 130 illustratively include a plurality of network links
and segments connected to a plurality of nodes. The network
links and segments may include local area networks (LANs)
110 and wide area networks (WANSs) 140, including wireless
networks, interconnected by intermediate nodes 150 to form
an internetwork of nodes, wherein the intermediate nodes
150 may include network switches, routers and/or malware
detection systems (MDSs 200) described further herein. The
LANs 110 may, in turn, interconnect end nodes 180 which,
in the case of private network 130, may be illustratively
embodied as endpoints. The LANs may also include net-
work storage 160N, while the end nodes embodied as
endpoints may include endpoint storage 160E (e.g., disk
drives, flash drives, removable media), which together con-
stitute customer storage.

In an embodiment, the endpoints may illustratively
include, e.g., client/server desktop computers, laptop/note-
book computers, process controllers, medical devices, data
acquisition devices, mobile devices, such as smartphones
and tablet computers, and/or any other intelligent electronic
device having network connectivity. The nodes illustratively
communicate by exchanging packets or messages (i.e., net-
work traffic) according to a predefined set of protocols, such
as the HyperText Transfer Protocol (HTTP), although other
protocols may be advantageously used with the embodi-
ments herein. In the case of private network 130, the
intermediate node 150 may include a firewall or other
network device configured to limit or block certain network
traffic to protect the endpoints from unauthorized users.

FIG. 2 is a block diagram of an intermediate node that
may be advantageously used with one or more embodiments
described herein. The intermediate node is illustratively
embodied as MDS 200 and includes one or more central
processing units (CPUs) 212, a memory 220, one or more
network interfaces 214 and one or more devices 216 con-
nected by a system interconnect 218, such as a bus. The
devices 216 may include storage devices (e.g., disks) and/or
other types of input/output (I/O) or peripheral devices. Each
network interface 214 may contain the mechanical, electri-
cal and signaling circuitry needed to connect the node to the
network 130 to thereby facilitate communication over the
network. To that end, the network interface 214 may be
configured to transmit and/or receive messages using a
variety of communication protocols including, inter alia,
HTTP.

The memory 220 may include a plurality of locations that
are addressable by the CPU(s) 212 and the network
interface(s) 214 for storing software program code (includ-
ing application programs) and data structures associated
with the embodiments described herein. The CPU 212 may
include processing elements or logic adapted to execute the
software program code, such as malware detection system
300, and manipulate the data structures, e.g., organized as
analysis database 400. Exemplary CPUs may include fami-
lies of instruction set architectures based on the x86 CPU
from Intel Corporation of Santa Clara, Calif. and the x64
CPU from Advanced Micro Devices of Sunnyvale, Calif.

An operating system kernel 230, portions of which are
typically resident in memory 220 (in-core) and executed by
the CPU, functionally organizes the node by, inter alia,
invoking operations in support of the application programs
executing on the node. A suitable operating system kernel
230 may include the Windows® series of operating systems
from Microsoft Corp of Redmond, Wash., the MAC OS®
and iOS® series of operating systems from Apple Inc. of
Cupertino, Calif., the Linux® operating system and versions
of the Android™ operating system from Google, Inc. of

US 9,467,460 B1

5

Mountain View, Calif., among others. Suitable application
programs may include Adobe Reader® from Adobe Systems
Inc. of San Jose, Calif. and Microsoft Word from Microsoft
Corp of Redmond, Wash. Illustratively, the application pro-
grams may be implemented as user mode processes 240 of
the kernel 230. As used herein, a process (e.g., a user mode
process) is an instance of software program code (e.g., an
application program) executing in the operating system that
may be separated (decomposed) into a plurality of threads,
wherein each thread is a sequence of execution within the
process.

It will be apparent to those skilled in the art that other
types of processing elements and memory, including various
computer-readable media, may be used to store and execute
program instructions pertaining to the embodiments
described herein. Also, while the embodiments herein are
described in terms of software program code and computer,
e.g., application, programs stored in memory, alternative
embodiments also include the code/programs being embod-
ied as modules consisting of hardware, software, firmware,
or combinations thereof.

FIG. 3 is a block diagram of a malware detection system
that may be advantageously used with one or more embodi-
ments described herein. The malware detection system 300
may include a submitter 310 and an analysis engine 320. In
an embodiment, the submitter 310 may be embodied as a
module containing computer executable instructions
executed by the CPU 212 to examine a current object 302
(e.g., file, web page, universal resource locator, and/or
email) provided to the system for analysis from customer
storage (e.g., network storage 160N and/or endpoint storage
160E), HTTP payload/emails directed to an endpoint via the
LAN 110 and/or other sources. In response to such exami-
nation, the submitter may decide whether it is appropriate to
submit the current object 302 to the analysis engine 320.
That is, the submitter 310 may be configured to identify
whether the current object is suspicious. If so, the object may
be sent to the analysis engine for further investigation.
Iustratively, there is a submitter (and a NMS 200) for each
type of “attack vector,” i.e., mode of object ingress to the
customer network (e.g., email, web, file storage, mobile).
For the email attack vector, the submitter may extract a
payload of the email (which may be an object, such as a file
or URL) and send the object to the analysis engine 320. For
a web attack vector, the submitter 310 may examine one or
more packets (e.g., HITP packets) and may extract a pay-
load (which may be an object, such as a file or URL) and
may send the object to the analysis engine 320. Each attack
vector, the submitter may determine whether the object is
non-suspect (i.e., benign) or “not sure”, in which case the
object is sent to the analysis engine.

In an embodiment, the analysis engine 320 may include a
plurality of modules containing computer executable
instructions executed by the CPU 212 to analyze the current
object 302 to determine whether it is suspicious (i.e., mal-
ware). To that end, the analysis engine 320 may include a
static analysis module 330, a score generator module 340, a
behavioral analysis module 350, and a classifier module 360
to determine whether the object is suspicious. The current
object 302 may be contained in any attack vector (e.g., file
storage, an email or network content). The static analysis
module 330 may be configured to detect anomalous char-
acteristics of the current object 302 to identify whether the
current object is “suspect” and deserving of further analysis
or whether it is non-suspect (i.e., benign) and not in need of
further analysis. The score generator module 340 may be
configured to generate a score (i.e., figure of merit) denoting

20

25

30

35

40

45

55

6

a degree of certainty that the object is malware. The behav-
ioral analysis module 350 may be configured to process (i.e.,
analyze) the suspect current object to arrive at a malware/
non-malware classification based on observed anomalous
behaviors during processing of the suspect current object.
The classifier module may be configured to determine
whether the object is malicious (and categorize the activity)
using pre-defined anomalous behaviors (monitored activity)
of verified exploits and malware.

According to a prior approach, observed behaviors (i.e.,
analysis results) for previously analyzed objects may be
recorded in, e.g., an object cache and indexed by an object
identifier (ID) that is generated by, e.g., applying a hash
function (such as MDS5 or SHA-256 hash) to the object.
During subsequent analysis of the current object, the cache
may be searched using the object ID of the current object
and compared with object IDs of previous objects to deter-
mine whether there is match. If there is a match, the current
object may be deemed a “duplicate” object and further
analysis may not be required. Rather, the recorded analysis
results of the matching previously analyzed object may be
used to either issue an alert if the current object is deemed
malware (e.g., the matching object is classified as malware)
or to take no action (simply direct analysis workflow to other
objects) if the object is classified as benign.

As noted, the prior approach organized the object cache as
a single data structure (e.g., a large table) having a plurality
of entries or rows, each of which represented metadata of an
object, and a plurality of columns, each of which represented
an attribute of the object metadata. The rows of the cache
were configured to store updates, such as insertions and
deletions, of the object metadata, including constant meta-
data (such as an object ID and size of object) as well as
behavioral metadata (such as states associated with the
object). However, use of the single table to accommodate
such updates adversely impacts performance, particularly
where two or more entities attempt to (contend for) access,
e.g., read, write and/or overwrite, the object metadata of the
rows concurrently. Moreover, as the object metadata of each
row transitions through various states during the analysis,
there may be overwrite of certain attributes of the object
metadata. Therefore, in addition to the adverse performance
impact, the use of the single table may suffer from a loss of
information (i.e., object metadata) as the states transition.

The embodiments herein provide a modularized architec-
ture using vertical database partitioning of an analysis
database configured to store information, such as object
metadata, of one or more objects processed by a state
machine, e.g., the analysis engine of the malware detection
system to generate processing results. The database may
include a plurality of vertical data structures, such as one or
more master blocks, state sub-blocks, and state co-tables, as
well as state transition queues. The modularized architecture
may illustratively organize (i.e., partition) the database into
a plurality of stages, wherein each stage includes a state
sub-block, a state co-table and a state transition queue. The
modularized architecture may further organize the database
such that each stage corresponds to a process (i.e., execution
of' a module) of the overall operation (e.g., analysis engine
operating on the object). Notably, the module may operate
(i.e., perform an action) on the object metadata stored in data
structures corresponding to the object and generate via the
action (i.e., execution of the module) the processing results
that are stored in the associated state co-table, which then
provides information (e.g., at least a portion of the process-
ing results) to a next stage. Invocation of the next stage (i.e.,
execution of a next stage action) may be dependent on

US 9,467,460 B1

7

completion (i.e., processing results) of one or more previous
stages. That is, the next stage may have a dependency on the
one or more prior stages that provide information for execu-
tion for the next stage action.

It is expressly contemplated that embodiments of the
database architecture may include any overall operation
(including business operations) which may be implemented
as a state machine having one or more stages, e.g., gathering
and delivery of mail. For example, assume such business
operations are postal services. Each stage may represent an
action of an overall postal operation (i.e., a state machine),
such as gathering, sorting and delivery of mail. The state
transition queue for each postal action may store a request to
perform the action (e.g., gather, sort, deliver) associated with
the stage on a piece of mail (i.e., an object). The state
sub-block may record when processing (i.e., the action) by
the stage on the object (piece of mail) began (e.g., start
timestamp) and ended (e.g., end timestamp). Metadata about
the piece of mail (e.g., addressee) may be recorded in the
action output of the state co-table, which may be used by a
next stage (e.g., sorting). The state machine (postal opera-
tion) progresses as the action of each stage is performed
according to its dependency on the other stages. In typical
postal operations, for instance, mail is first gathered, then
sorted and finally delivered creating a simple pipeline
dependency where delivery depends on sorting which, in
turn, depends on gathering. As such, dependency logic
associated with each stage may be used to control transition
from stage to stage. That is, dependency logic associated
with the postal sorting stage may wait for completion of mail
gathering before invoking (i.e., inserting an action request in
the state transition queue) the sorting action. Similarly,
dependency logic associated with the delivery stage may
wait for completion of the sorting stage before invoking the
delivery action.

FIG. 4 is a block diagram of an exemplary analysis
database 400 that may be advantageously used with one or
more embodiments described herein. The analysis database
400 may include a plurality of data structures, such as one
or more master blocks, state sub-blocks 430, and state
co-tables 440, as well as state transition queues 450. Illus-
tratively, each master block may be embodied an object table
(OT) 420 containing initial state metadata, such as e.g., an
object 1D422 and object hash 424 of an object. Each state
sub-block (SSB) 430 may be configured to store object
metadata needed for processing by the corresponding mod-
ule of the analysis engine 320. In an embodiment, the
modularized, multi-stage architecture of the analysis data-
base 400 is a representation of the analysis engine 320. That
is, vertical partitioning of the database into stages that track
transitions between stages and store processing results at
each stage may implement a state machine that represents
the analysis engine 320. To that end, the object metadata
stored at the SSB 430 may be constant metadata and may
include, e.g., the object ID 422; a starting time-stamp 436
entering the stage; an ending timestamp 438 leaving the
stage; and a status 439 indicating status of the completed
action (i.e., processing by the module). Each state co-table
(SCT) 440 may be configured to store results of the action
as an action output 446, wherein the results, for example,
may include analytical information, such as anomalous
behaviors, associated with the object observed at an asso-
ciated state. Note that the “co-table” denotes association of
the state co-table 440 with the master block (and object table
420) such that the results stored in the state co-table 440 may
be accessible by reference via from the object ID 422.

10

15

20

25

30

35

40

45

50

55

60

65

8

Each state transition queue (STQ) 450 may be configured
to store updates (e.g., insertions and deletions) for transi-
tioning between the stages of the state machine and, to that
end, may be configured to leverage database primitives to,
e.g., manipulate entries within the queue (i.e., action
requests) to insert into the state sub-block. For example, the
state transition queue 450 may store information such as the
object ID 422; a timestamp 454 indicating when information
was submitted to the queue 450, i.e., beginning of informa-
tion; and an indication or request flag 456 specifying that an
action request for processing by the stage was received by a
module associated with the stage of the analysis engine 320.
Dependency logic associated with each stage may be used to
insert the action request into the STQ to thereby control
transition from stage to stage. Alternatively, a prior stage
may directly insert an action request into the STQ of a
subsequent stage when no dependency on another stage
exists, i.e., the subsequent stage depends only on the prior
stage.

In an embodiment, the modularized architecture includes
an object table 420 for each object, wherein the object table
is initially of a small size. Subsequently during processing of
the object, the size of the object table 420 may increase as
appropriate state sub-blocks 430, state co-tables 440 and
state transition queues 450 are instantiated and results from
each stage are stored in their respective co-table. As the
object is processed, information associated with a state
transition, e.g., stored in the state co-table 440 for one or
more previous stages of the analysis database 400, may be
advanced (i.e., forwarded) by reference using the object ID
in an action request to the state transition queue 450 asso-
ciated with the next stage of the database. Such information
may then be deleted from the state transition queue 450
associated with the previous stage. Accordingly, the state
transition queue may be embodied as a small, lightweight
table configured to store information associated with a state
transition by reference (e.g., via the object ID).

FIG. 5 is a block diagram of an exemplary modularized
architecture 500 of the analysis database 400 that may be
advantageously used with one or more embodiments
described herein. The modularized architecture may orga-
nize the object table 420, state sub-blocks 430, state co-
tables 440, and state transition queues 450 into vertical
portions of the analysis database 400 to implement a state
machine (e.g., a pipeline) having a plurality of stages.
Tlustratively, the state machine includes an initial object
table (OT) stage and subsequent stages, each of which
includes a state sub-block (SSB), a state co-table (SCT) and
a state transition queue (STQ). The state machine may be
configured to store the status or state of an object as it flows
(i.e., transitions) through the state machine, including any
changes to the state, during processing by the modules of the
analysis engine 320. Accordingly, the modularized architec-
ture 500 may be further organized such that each stage
corresponds to a module of the analysis engine 320 operat-
ing on the object.

In an embodiment, the modularized architecture 500 may
organize the analysis database 400 as a state machine
configured for dependency processing of the object. For
example, state sub-block 1 (SSB 1) may be configured to
store constant metadata used to perform a first stage (“stage
S17) of analysis (e.g., static analysis) by a module (e.g., the
static analysis module 330). To transition from an initial
state of the object at, i.e., the initial object table (OT) to stage
S1, an action request 510« is inserted into a state transition
queue (STQ 1) provided to stage 1. Upon completing its
stage 1 of analysis (i.e., action), the static analysis module

US 9,467,460 B1

9

330 may store the (output 534a) results of the analysis (i.e.,
object metadata) in state co-table (SCT 1) associated with
the state sub-block SSB 1 of stage 1. In addition, the status
439 of SSB 1 may be set to, e.g., DONE, indicating that the
action 1 is done. Notably the action (i.e., processing) per-
formed by the module of each stage acts as a consumer of
input 532 (i.e., information) and producer of output 534 (i.e.,
results). The analysis output (i.e., current stage output) may
be used to start the next stage (stage 2) of analysis (“stage
S2”) when the dependency of stage 2 is satisfied via depen-
dency logic 2. Accordingly, some of the object metadata
(such as the time stamp) in the state co-table SCT 1 of stage
1 may be inserted as action request 5105 into the next
transition queue (e.g., STQ 2). Note that the stage output
(i.e., analysis results) once generated remains as constant
(unchanging) metadata.

In an embodiment, state sub-blocks SSB 2 and 3 of stages
2 and 3 may store constant metadata used to perform
subsequent analysis (e.g., score generation and behavioral
analysis) by respective modules (e.g., score generator mod-
ule 340 and behavioral analysis module 350). Once process-
ing of the respective stages of analysis completes (i.e., action
2 and action 3), (constant) results are stored in the associated
state co-tables SCT 2 and 3. The state sub-blocks SSB 2 and
3 and their state co-tables SCT 2 and 3 contain constant,
non-modifiable metadata, i.e., insert-only metadata. How-
ever, the state co-table SCT 2 of stage 2, for example, may
contain results (metadata) needed (i.e., dependency) to start
the next stage of analysis at state sub-block SSB 3 of stage
3. Accordingly, some of the information (object metadata) in
the state co-table SCT 2 may be provided as input 532¢ to
the action 3 of stage 3. As such, an action request 510c¢ may
be inserted into the state transition table STQ 3 when
dependency logic 3 determines the dependency for stage 3
is satisfied. Notably, the dependency logic may be interrupt
driven on completion of the prior stage or poll driven (e.g.,
periodic testing of dependency satisfaction). Note also that
the dependency logic may be global such that it operates as
a scheduler of the stages, e.g., waking at periodic intervals
and determining which stages may “run” when their respec-
tive dependencies are satisfied.

The information stored in the state sub-blocks 430 and
state co-tables 440 of the modularized architecture 500
represent constant information (e.g., object metadata) that is
initially stored in-core (e.g., in memory 220) and thereafter
persistently stored on-disk (e.g., in accordance with an
on-disk database format on storage devices 216). In contrast,
the information stored in the state transition queues repre-
sent fleeting data (metadata) that is temporarily stored and
eventually deleted. Such fleeting information may include
frequent updates (e.g., insertions and deletions) that may
overwrite certain attributes of object stage metadata. Note,
however that the updates do not occur at the state sub-
blocks, and the co-tables, which are instead modified by the
results of actions (i.e., object analysis).

As noted, the updates (e.g., insertions and deletions) to the
analysis database 400 are illustratively directed to the state
transition queues 450. The module performing a current
stage of analysis may complete and cause dependency logic
to trigger insertion of information into the next stage STQ.
The module performing a next stage of analysis may
dequeue (i.e., extract) information from the queue (once the
stage of analysis for the object completes). Thus, unlike the
prior approach of a highly-shared object cache, no global
updating or locking mechanisms are required. That is, the
dependency logic of each stage acts as a “single writer”
inserting (i.e., enqueuing) information into the queue and the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

action of the stage acts as a “single reader” deleting (i.e.,
dequeuing) information from the queue. Output results from
object analysis into the database of the modularized archi-
tecture may be distributed among stage co-tables, which
stream information among the stages via reference (e.g.,
object ID) in the state transition queues for processing by the
modules, resulting in consumer/producer interactions
between only previous and current stages and their respec-
tive state sub-blocks, which is inherently “lock free”.
Although the updates may be similar to those that occur in
the prior single table approach, the amount of metadata that
is updated in the modularized architecture is reduced from
the prior approach because, e.g. a full row of the single table
is not updated; instead, only relatively small transition
queues 450 are updated to denote state transitions. The
reduced amount of metadata/updates is also easier to syn-
chronize with the on-disk database.

Tustratively, the organization of each stage is the same
across the analysis database 400, e.g., a state sub-block 430
receives information from its state transition queue 450 and
the stage action 530a-c¢ generates outputs 534a-c (i.e.,
results) that are stored in its associated state co-table 440,
which then provides information for a next state transition
queue 450 of a next stage. According to the modularized
architecture, once processing dependencies are identified,
the state transitions may be modified to handle parallel
and/or sequential processing as needed. That is, the state
machine of the modularized architecture may be configured
with “loose-coupling” that obviates a requirement of
sequential (pipeline) operation, i.e., each module may oper-
ate only on its object metadata stored in the state sub-block,
independent of other modules and their object metadata.
Such loose coupling facilitates efficient parallel processing
performance within the overall operation. The processing
flow of the analysis engine 320 may determine the organi-
zation of the modularized architecture; alternatively, the
submitter 310 may choose a mode, e.g., sequential or
parallel, for processing of the stages. In addition, a global
job queue may be provided that constantly changes and
manifests status of objects analyzed in the architecture by,
e.g., indicating requests/jobs in flight/progress. Note that the
global job queue is updated or constructed by the stored
(database) procedures described above.

FIG. 6 is a block diagram of another exemplary modu-
larized architecture 600 of the analysis database 400 that
may be advantageously used with one or more embodiments
described herein. In an embodiment, the modularized archi-
tecture 600 may organize the analysis database 400 as a state
machine configured for parallel (and sequential) processing.
The processing flow relating to analysis of an object within
the state machine starts at the object block OT and proceeds,
in parallel, to the data structures of stages 1 and 2. The
processing flow then proceeds sequentially from stage 1 to
stage 3 via dependency logic 3 and onto stage 5 via
dependency logic 5 which may illustratively include a
dependency on stage 2 as well as stage 3. The processing
flow may also proceed sequentially from stage 2 to stage 4
while depending on results from stage 5 before continuing
onto a final results stage. Returning briefly to the postal
services example, a sorting action (stage 3) may occur in
parallel to checking a size of a mail piece (stage 2) and a
weight of the piece (stage 4); whereas a subsequent delivery
action (results stage) may depend on the size and weight
information from stages 2 and 4 before invoking the action,
e.g., deliver via truck or by mail carrier.

FIG. 7 is a block diagram of yet another exemplary
modularized architecture 700 of the analysis database 400

US 9,467,460 B1

11

that may be advantageously used with one or more embodi-
ments described herein. In an embodiment, the modularized
architecture 700 may modify the state machine of the
analysis database to include an additional stage (e.g., stage
5). The additional stage may correspond to another module
of the analysis engine 320 and may be added to the pro-
cessing flow by, e.g., inserting data structures, such as state
sub-block 430, state co-table 440 and state transition queue
450 of stage 5, between the object table (OT) and stage 4
(i.e., in parallel to stage 2). The existing stages (e.g., stages
1-3) and their associated data structures are not affected by
the modification and continue to operate as intended. Only
the object table (OT) and stage 4 (and the associated
dependency logic 4) are impacted and need to adapt to the
inserted stage 5.

Tlustratively, the modularized architecture implements a
database-driven state machine, where state transitions are
recorded in the analysis database 400 to provide information
of where the object is in the state machine at any time. Work
(action) is performed by each module corresponding to a
stage of the multi-stage architecture and consumers may
read the output of that work. For example, a user interface
of'the MDS 200 may request the results (output) of the work
or those results may be transferred to one or more nodes of
the network environment 100. Unlike the prior approach
where the consumers (and actions) contend for access to the
single table (raising contention and locking issues), the
modularized architecture isolates such consumer access to
one or more stages. For example, if a consumer (and action)
is interested in status, e.g., a number of requests, for static
analysis, the inquiry may be directed to the appropriate state
co-table 440 of the modularized architecture to access the
results stored in that table. In essence, the modularized
architecture of the analysis database replaces updates
directed to the single large table with updates directed to
relatively small STQ tables distributed among the state
machine.

FIG. 8 is an exemplary simplified procedure for executing
the state machine using the modularized architecture
described herein. The procedure 800 starts at step 802 and
proceeds to step 804 where an action request is inserted into
the state transition queue for one or more initial stages of the
state machine. At step 806, the action request is dequeued
and the action is executed (step 808) consuming an input and
optionally producing an output. The output may be stored in
the state co-table for the stage at step 812. The status may be
set in the state sub-block in step 810 and at step 814, a
determination is made as to whether any stages remain to be
executed in the state machine. If not, the final results are
stored and the procedure ends at step 824. If stages remain
to be executed, the dependency for the next stage is polled
at step 816. A determination is then made as to whether the
dependency of the next stage is satisfied at step 818. If so,
an action request is inserted into the state transition queue
for the next stage at step 820. If not, the dependency is polled
again. Note that the above procedure may be performed in
parallel for those stages which may execute in parallel.

While there have been shown and described illustrative
embodiments of a modularized architecture using vertical
partitioning of an analysis database configured to store
object metadata and processing results of one or more
objects analyzed by an analysis engine (i.e., state machine)
of a malware detection system, it is to be understood that
various other adaptations and modifications may be made
within the spirit and scope of the embodiments herein. For
example, embodiments have been shown and described
herein with relation to the organization of the modularized

15

20

25

40

45

55

12

architecture as a multi-stage, state machine configured to
store information (object metadata) processed by modules of
the analysis engine. However, the embodiments in their
broader sense are not so limited, and may, in fact, also allow
for use of the modularized architecture for analytical and
tracking dashboards. For instance, the number of objects
analyzed by the analysis engine may be determined by
counting object tables (e.g., master blocks), while the num-
ber of state transitions that have occurred for an object may
be determined by counting sub-blocks and/or state co-tables,
or by referencing the state transition queues. As such, it is
expressly contemplated that the database architecture may
include embodiments for any overall operation (including
business operations) which may be implemented as a state
machine.

Advantageously, the modularized architecture may orga-
nize the database using vertical partitioning to efficiently
perform sequential and/or parallel processing within stages
associated with the partitions in order to implement a state
machine. To that end, the analysis database may be used as
a “state transition engine” configured to store state transi-
tions using small queues to maintain information and attri-
butes throughout the stages. States of objects may be main-
tained in stages of sub-blocks and co-tables, wherein each
stage is independent of other stages to thereby maintain
progress of the state machine In sum, the modularized
database architecture (i) reduces the size of update opera-
tions by replacing those operations with small queue inser-
tions/deletions; (ii) provides full information of the analysis
at each stage; (iii) allows flexible stage modification to adapt
to stages of analysis; and (iv) distributes the update load of
the database (versus single table) through the use of modu-
larized queues having small sized changes (i.e., insertions/
deletions).

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, it is expressly contemplated that
the components and/or elements described herein can be
implemented as software encoded on a tangible (non-tran-
sitory) computer-readable medium (e.g., disks, electronic
memory, and/or CDs) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly this description is to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein

What is claimed is:

1. A system comprising:

a memory connected to a processor; and

program code executing on the processor, the program

code operable to:

configure a database to store object metadata of one or
more objects processed by a state machine to gen-
erate processing results, the database including one
or more object tables, state sub-block structures,
state co-table structures, and state transition queue
structures, the database vertically organized as a
plurality of stages to implement the state machine,
wherein each stage includes a state sub-block struc-
ture, a state co-table structure and a state transition
queue structure, the database further organized such
that each stage corresponds to a module of an
analysis engine operating on an object, and wherein

US 9,467,460 B1

13

the module corresponding to each stage executes
according to a dependency on the processing results.

2. The system of claim 1 wherein the module is configured
to process the object metadata stored in the structures of a
corresponding stage such that the state sub-block structure
receives the object metadata from the state transition queue
structure and the module generates the processing results
that are stored in the state co-table structure.

3. The system of claim 2 wherein the state co-table
structure is configured to provide a portion of the processing
results to a next state transition queue structure of a next
stage.

4. The system of claim 3 wherein dependency logic
associated with each stage determines whether the depen-
dency is satisfied.

5. The system of claim 4 wherein each object table
comprises an initial state metadata having one of an object
identifier and an object hash.

6. The system of claim 4 wherein each state sub-block
structure is configured to store a status of the processing
results of the stage for processing by the corresponding
module of the analysis engine.

7. The system of claim 6 wherein the object metadata
comprises one of a start timestamp, an end timestamp and
the status.

8. The system of claim 6 wherein each state co-table
structure is configured to store results of the processing by
the corresponding module.

9. The system of claim 8 wherein the results comprise
analytical information associated with the object observed at
an associated state.

10. The system of claim 8 wherein each state transition
queue structure is configured to store updates for transition-
ing between the stages.

11. The system of claim 10 wherein each state transition
queue structure is further configured to manipulate entries
within the queue structure to insert into the state sub-block
structure.

12. A method comprising:

organizing an analysis database as a state machine having

a plurality of stages, wherein each stage includes a state
sub-block structure, a state co-table structure and a state
transition queue structure;

storing object metadata and processing results of an object

in the analysis database, the object metadata processed
by an analysis engine of a node having a processor to
generate the processing results; and

processing, at the node, the object metadata stored in the

structures of a stage such that a state sub-block struc-

10

15

20

25

30

35

40

45

14

ture receives the object metadata from a state transition
queue and provides the processing results for storage in
the state co-table.

13. The method of claim 12 further comprising forward-
ing a portion of the processing results to a next stage.

14. The method of claim 12 wherein the analysis database
is organized such that each stage corresponds to a module of
the analysis engine operating on the object and wherein the
module of each stage executes according to a dependency on
the processing results.

15. The method of claim 14 further comprising:

determining whether the dependency is satisfied; and

in response to determining that the dependency is satis-

fied, invoking the analysis engine to perform a next
stage by inserting an action request into the state
transition queue of the next stage.
16. The method of claim 14 wherein organizing the
analysis database further comprises configuring the state
sub-block structure to store a status of processing by a
corresponding module of the analysis engine.
17. The method of claim 16 wherein organizing the
analysis database further comprises configuring the state
transition queue structure to store updates for transitioning
between the stages.
18. The method of claim 17 wherein the state transition
queue structure is configured to manipulate entries stored in
the state transition queue structure to insert into the state
sub-block structure.
19. The method of claim 14 wherein organizing the
analysis database further comprises configuring the state
co-table structure such that the processing results stored in
the state co-table may be accessible by reference from the
analysis database.
20. A non-transitory computer readable medium contain-
ing instructions for execution on a processor for a method
comprising:
organizing an analysis database of a node including the
processor as a state machine having a plurality of
stages, wherein each stage includes a state sub-block
structure, a state co-table structure and a state transition
queue structure, and wherein each stage corresponds to
a module of an analysis engine operating on an object;

storing object metadata and processing results of the
object in the analysis database, the object metadata
processed by the analysis engine to generate the pro-
cessing results; and

processing the object metadata stored in the structures of

a stage such that a state sub-block structure receives the
object metadata from a state transition queue.

#* #* #* #* #*

